025:250 COMPOSITION: ELECTRONIC MEDIA I

Calculating period from frequency, frequency from period, frequency from pitch name, and sample rate from interval of transposition.

Period from frequency

Example:

If a sound has a frequency f of 625 Hz, what is its period T in milliseconds?

a)
$$f = 625 \text{ Hz}$$

b)
$$T = (1/625 \text{ Hz}) \times 1000$$

c)
$$T = 0.0016 \times 1000$$

d)
$$T = 1.6 \text{ ms}$$

Frequency from period

Example:

If a sound has a period T of 8 ms, what is its frequency f in Hertz?

a)
$$T = 8 \text{ ms}$$

b)
$$f = 1/(8/1000) Hz$$

c)
$$f = 1/(0.008)$$
 Hz

d)
$$f = 125 \text{ Hz}$$

Frequency from pitch name

Let C4 denote middle C and B3 denote B below middle C.

Let A4 have a frequency of 440 Hz.

Let A5 have a frequency of 440 x 2 Hz.

Let Bb4 have a frequency of 440 x 1.0595 Hz.

Example:

What is the frequency f of Eb2?

a) f of
$$A4 = 440 \text{ Hz}$$

b) f of
$$A1 = 440 \text{ Hz/8 Hz}$$

c) f of
$$A1 = 55 \text{ Hz}$$

d) f of Eb2 = $55 \text{ Hz} \times 1.0595^{\text{n}}$ where n = number of semitones Eb2 is above A1

e) f of Eb2 =
$$55 \text{ Hz x } 1.05956$$

(Hint: since multiplying a frequency by 1.0595 raises the pitch a semitone, keep multiplying the transpositions by 1.0595 until the desired number of semitones has been reached. Fun fact: to lower a pitch by n semitones, divide f by 1.0595ⁿ.)

g) f of
$$Eb2 = 77.77 \text{ Hz}$$

Sample rate from interval of transposition

Let sampling rate S kHz = Hz/1000

Example:

If a sound has a sampling rate of 44.1 kHz, what sampling rate will lower its pitch by 3 semitones?

- a) $S = 44.1 \text{ kHz}/1.0595^{\text{n}}$ where n = number of semitones you wish to lower the pitch
- b) $S = 44.1 \text{ kHz}/1.0595^3$
- c) S = 44.1 kHz/(1.0595 x 1.0595 x 1.0595)
- d) S = 44.1 kHz/1.189
- e) S = 37.089 kHz