025:250 COMPOSITION: ELECTRONIC MEDIA I

Calculating harmonic frequency from fundamental frequency and harmonic number; calculating harmonic number from fundamental frequency and harmonic frequency; calculating fundamental frequency from adjacent harmonics; calculating harmonic amplitude from waveshape type and amplitude and harmonic number; calculating harmonic frequencies of frequency-modulated periodic sounds.

Harmonic frequency from fundamental frequency and harmonic number

Example:

If a sound has a fundamental frequency f of 230 Hz, what is the frequency f₅ of its 5th harmonic?

a)
$$f = 230 \text{ Hz}$$

b)
$$f_5 = 5(230 \text{ Hz})$$

c)
$$f_5 = 1150 \text{ Hz}$$

Harmonic number from fundamental frequency and harmonic frequency

Example:

If a sound has a fundamental frequency f of 1200 Hz, what is the harmonic number N of the harmonic frequency $f_N = 8400 \text{ Hz}$?

a)
$$f = 1200 \text{ Hz}$$

b)
$$f_N = 8400 \text{ Hz}$$

c)
$$N = f_N/f$$

d)
$$N = 8400 \text{ Hz/f Hz}$$

e)
$$N = 8400 \text{ Hz}/1200 \text{ Hz}$$

f)
$$N = 7$$

Fundamental frequency from adjacent harmonics

Example:

If harmonic $f_N = 1600$ Hz and harmonic $f_{(N+1)} = 2000$ Hz, what is the fundamental frequency f?

a)
$$f_N = 1600 \text{ Hz}$$

b)
$$f_{(N+1)} = 2000 \text{ Hz}$$

c)
$$f = f_{(N+1)} - f_N$$

d)
$$f = 2000 \text{ Hz} - 1600 \text{ Hz}$$

e)
$$f = 400 \text{ Hz}$$

Harmonic amplitudes of a sawtooth wave

Example:

If a sawtooth wave has an amplitude A of 12000, what is the amplitude A₃ of its 3rd harmonic?

a)
$$A = 12000$$

b)
$$A_N = A/N$$

c)
$$A_3 = 12000/3$$

d)
$$A_3 = 4000$$

Harmonic amplitudes of odd harmonics of a square wave

Example:

If a square wave has an amplitude A of 12000, what is the amplitude A₃ of its 3rd harmonic?

a)
$$A = 12000$$

b)
$$A_N = A/N$$
 if $N = \{1, 3, 5, ...\}$

c)
$$A_3 = 12000/3$$

d)
$$A_3 = 4000$$

Harmonic amplitudes of even harmonics of a square wave

Example:

If a square wave has an amplitude A of 12000, what is the amplitude A_4 of its 4th harmonic?

a)
$$A = 12000$$

b)
$$A_N = 0$$
 if $N = \{2, 4, 6, ...\}$

c)
$$A_4 = 0$$

Upper and lower sidebands in simple ratio sine wave frequency modulation

Let sine wave 1 be modulated by sine wave 2. Sine wave 1 is called the carrier and has a frequency c. Sine wave 2 is called the modulator and has a frequency m.

Example:

If a sine wave carrier frequency c = 300 Hz is modulated by a sine wave modulator frequency m = 100 Hz, what are the frequencies of the Nth = 3rd order upper and lower sidebands? List all the frequencies, including the carrier, in ascending order to see the resulting harmonic structure of the resultant tone.

a)
$$c = 300 \text{ Hz}$$

b)
$$m = 100 \text{ Hz}$$

c)
$$N = 3$$

d) Nth order upper sidebands =
$$c + m$$
, $c + 2m$, ..., $c + Nm$

e) 3rd order upper sidebands =
$$300 \text{ Hz} + 100 \text{ Hz}$$
, $300 \text{ Hz} + 2(100) \text{ Hz}$, $300 \text{ Hz} + 3(100) \text{ Hz}$

- g) 3rd order upper sidebands = 400 Hz, 500 Hz, 600 Hz
- h) Nth order lower sidebands = c m, c 2m, ..., c Nm
- i) 3rd order lower sidebands = 300 Hz 100 Hz, 300 Hz 2(100)Hz, 300 Hz 3(100)Hz
- j) 3rd order lower sidebands = 300 Hz 100 Hz, 300 Hz 200 Hz, 300 Hz 300 Hz
- k) 3rd order lower sidebands = 200 Hz, 100 Hz, 0 Hz
- l) Harmonic series: 100 Hz, 200 Hz, 300 Hz, 400 Hz, 500 Hz, 600 Hz