Expanding [sfplay~]: subpatches, [send~]/[receive~]

Electronic Music IT

Spring 2014

1. This presentation will demonstrate how to expand the functionality of our [sfplay~]/[sfrecord~] patch by using
subpatches.

The goals set for the patch in this presentation are:

i Play multiple soundfiles, triggered simultancously.
ii. Record the aggregate of audio output into one file.
iii. Stop recording at the end of all playback.
b. The solutions demonstrated here will be designed for a specitic context. The techniques/concepts involved,
however, can find applications in many other contexts.
2. Multiple soundfile playback, part 1: make subpatches

a. We will begin with the patch created in a previous handout, shown below:

=t
)

-
e

e

g

tbobb -
- e
-

£ E
p piayback lboh
i e oo~
¥ g
g . - T
4 5 e lake sel licks
’;] lx’:} - -y gy
: P e e e i i
i K counler date
i -
]l e o a2 <
! s 9 i pack s |

X

o
-
8

-

. g aoen £ roarse Q@ g 3,

nnlf open Se¥e%h
-

TR R R,

b. Since we are making one recording of multiple file playbacks, the only component we need to reproduce is

our [p playback] subpatch. We can do this by copying and pasting multiple instances of it:

1<

;p‘aybauk
;p:av_ﬁmck

E’p} ayback

Simply making connections, from the initiating [trigger] to each subpatch, and from each subpatch to

[strecord~ 2], presents two main problems:

-
0 1
- - - e
Jrp—— L "
nate
9z
- -
tobbb gate
- - o~
- - -
p plavback p prayback tbbbd
he s -~ ke L - e e
.,:.7 “a, ¥ ’ - - e wn -
p playbdek ¢ < am - take set 0 ticks
Wt e, o . lbb gate = - '

5, L Yk ¥ o ww w - - -
- G, ¥ counter date
p playbacis, e - -

g 4 Y.

'a b * *a w -~ £ 2

Ya, Tt pack 511
W *w L

sfrecord~ 2
-

i, There is no coordination the end of the last playback instance and the end of the recording.
ii. The audio being sent to [strecord~ 2] will be summed; any values that exceed 1 or -1 will be recorded as

distortion.

d. These two problems can be resolved with [send] and [receive], their audio versions, and a little math.

3. Multiple soundfile playback, part 2: [send]/[receive], etc.

a.

First, delete the added subpatches. Since the contents of a subpatch have to be modified on a per subpatch
basis, it is faster in the end to make adjustments to one subpatch and then copy it (thus copying all the
adjustments).

First, we will add a [send] object (here the identifier being used is “play”) where currently a bang is being

sent into our subpatch:

C.

g.

- e
0 1
- g -
gate
34
Ed
loobb
- -
-
5 play

Now, in the [p playback] subpatch, add a [receive] object (with the same identifier), where the inlet

currently is connected:

r play
L

R =

er

§

of jo

random 100

SIS
=

-
for

bbb

W

i

i

120 8

o

i

Now any input passed to [s play] (a bang) will be sent to [r play] (trigger the playback sequence).

[send] and [receive] have equivalent audio versions, [send~] and [receive~]. NB, [send] and [receive] can
be abbreviated as seen above; [send~] and [receive~] cannot.

Within the subpatch, create two [send~] objects, naming them “L” and “R”. Connect the output of the

final stage of [*~] objects to these [send~] objects, as shown below:

%

s 3 - -
“ - random 10
El ¥ .
A
: .
‘ w e
. % 10,
; % e
- . e -
F s U "m{
g g

G - - - -
¢ random 10§ random 10
e

»
[A—— R
" L
o100 < 410,
I e P
M v
- -
£+) e Q)
“w i
Bl #
T i
g & iy
e e -
s g ¥ .

" -
gend~ L send~ R

Create two [receive~] objects, again named “L” and “R”, in the main patch. Connect them to the inlets of

[strecord~ 2]:

. -
bbb gate
- T
- R —
|
receive~ L 0 i
- - »
uuuuuuuuuuuuuuuuu #
r
-
receive~ K
-y

-
aaaaa

...........

........

S

;I’E‘C‘{.Jm*" i;
This creates a connection between the audio output of any possible copies of the subpatch and [strecord~
2]. However, the possibility of distortion is still present.

This can be resolved by using a [/~] object. The creation argument of this object will have to match the

number of subpatches in use (for this demonstration we will use 4):

-
receive~ L
g
-
R e
-
receive~ R
- 4
[~ 4. s
g
»--»v:‘.,...-.‘:ﬂ* ‘1#&
sfrecord~ 2

Now, all audio sent to the [receive~] objects (remember, this audio has been summed together) will be
divided by 4, the maximum possible value (if all four subpatches are sending 1's simultaneously).
As we change the number of subpatches being used, this value will have to be changed. For this

dcmonstration, I will use a message box containing the needed value.

-

receive~ K

i

Py

R ke E R R

4. Stopping recording

a.

In order to record all of the soundfiles being played back, we need a way to count the number of playback-
over bangs that have occurred. We can achieve this with a [counter] and a [sel] object.

In the subpatch, create a [send] object attached to the rightmost outlet of [sfplay~ 2].

In the main patch, create a [receive] object with the same label (in this demonstration T use “end”), and
attach it to the leftmost inlet of [counter].

Attach the leftmost outlet to a [sel] object as shown below. Since we will be varying what [sel] is Tooking

for', here I leave it blank.

renc
e
- o -

counter

e e e

L

58]

Now we can use the message box that is setting the value of [/~] to also set the value [sel] will respond to.

. Recall that [counter] starts counting from 0. So, by the time the [counter] reaches 3, it will have received 4

—

bangs (0-1-2-3).
With that in mind, create a subtraction object with a creation argument of 1, and connect the message box

to the left inlet:

Connect the outlet of [- 1] to the right inlet of [sel]:

B |

rend
-

A o

counter
e el R

- -

v

The lett outlet of [sel] will now output a bang once the counter has received 4 bangs. To rephrase this, once
all 4 subpatches have finished playing back their files, the [sel] object will output a bang. This makes it
parallel to the bang coming from the single [stplay~], in the original [strecord~] patch.

Since we are using a [counter], and [sel] is looking for one specitic value, we will need to reset the [counter]

using a “set 0” message. It must be reset when [sel] outputs its bang, so we will use a [trigger]:

- - -
g3t
- Lo
qute
tbbob e
- - - -
4, rend s play lbbi
..... - -
counter tak set licks
- - b -
- o
-« 1 counler date
i s - -
-
sel -
- pack s 11
tbo
- - - -
& spontf apen %as%:-%: il
set0

@

i

